135 research outputs found

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    The global build-up to intrinsic edge localized mode bursts seen in divertor full flux loops in JET

    Get PDF
    A global signature of the build-up to an intrinsic edge localized mode (ELM) is found in the temporal analytic phase of signals measured in full flux azimuthal loops in the divertor region of JET. Toroidally integrating, full flux loop signals provide a global measurement proportional to the voltage induced by changes in poloidal magnetic flux; they are electromagnetically induced by the dynamics of spatially integrated current density. We perform direct time-domain analysis of the high time-resolution full flux loop signals VLD2 and VLD3. We analyze plasmas where a steady H-mode is sustained over several seconds during which all the observed ELMs are intrinsic; there is no deliberate intent to pace the ELMing process by external means. ELM occurrence times are determined from the Be II emission at the divertor. We previously [Chapman et al., Phys. Plasmas 21, 062302 (2014); Chapman et al., in 41st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2014), Vol. 38F, ISBN 2-914771-90-8] found that the occurrence times of intrinsic ELMs correlate with specific temporal analytic phases of the VLD2 and VLD3 signals. Here, we investigate how the VLD2 and VLD3 temporal analytic phases vary with time in advance of the ELM occurrence time. We identify a build-up to the ELM in which the VLD2 and VLD3 signals progressively align to the temporal analytic phase at which ELMs preferentially occur, on a ∼2−5ms timescale. At the same time, the VLD2 and VLD3 signals become temporally phase synchronized with each other, consistent with the emergence of coherent global dynamics in the integrated current density. In a plasma that remains close to a global magnetic equilibrium, this can reflect bulk displacement or motion of the plasma. This build-up signature to an intrinsic ELM can be extracted from a time interval of data that does not extend beyond the ELM occurrence time, so that these full flux loop signals could assist in ELM prediction or mitigation

    Towards the synthesis of phosphonic acid-based potential metallo-β-lactamase inhibitors

    No full text

    Real-time DVR Illumination Methods for Ultrasound Data

    No full text
    Ultrasound (US) volume data is noisy, so traditional methods for direct volume rendering (DVR) are less appropriate. Improved methods or new techniques are required. There are furthermore a high performance requirement and limited pre-processing to be considered in order for it to be used interactively, since the volume data might be time-varying. There exist numerous techniques for improving visual perception of volume rendering, and while some perform well and produce a visually enhanced result, many are designed and compared for use with medical data that has a high signal-to-noise ratio. This master thesis describe and compare recent methods for DVR illumination, in the form of ambient occlusion or direct/indirect lighting from an external light source. New designs and modifications are introduced for efficiently and effectively enhancing the visual quality of DVR with US data. Furthermore, this thesis addresses the issue of how clipping is performed during rendering and for the different illumination techniques, which is commonly used in ultrasound visualization. This diploma work was conducted at Siemens Corporate Research in Princeton, NJ where the partially open source framework XIP is developed. The framework was extended further to include modern methods for DVR illumination that are described in detail within this thesis. Finally, presented results show that several methods can be used to visually enhance the visualization within highly interactive frame-rates

    Neutron Spectrometry Techniques for Fusion Plasmas : Instrumentation and Performance

    No full text
    Neutron are emitted from a deuterium plasma with energies around 2.5 MeV. The neutron spectrum is intimately related to the ion velocity distribution of the plasma. As a consequence, the analysis of neutron energy spectra can give information of the plasma rotation, the ion temperature, heating efficiency and fusion power. The upgraded magnetic proton recoil spectrometer (MPRu), based on the thin-foil technique, is installed at the tokamak JET. The upgrade of the spectrometer was done to allow for measurements of deuterium plasmas. This thesis describes the hardware, the data reduction scheme and the kind of fusion plasma parameters that can be estimated from the data of the MPRu. The MPRu data from 3rd harmonic ion cyclotron resonance and beam heating are studied. Other neutron spectrometer techniques are reviewed as well, in particular in the aspect of suitability for neutron emission spectrometry at ITER. Each spectrometer technique is evaluated using synthetic data which is obtained from standard scenarios of ITER. From this evaluation, we conclude that the thin-foil technique is the best technique to measure, e.g., the ion temperature in terms of time resolution

    Neutron Spectrometry Techniques for Fusion Plasmas : Instrumentation and Performance

    No full text
    Neutron are emitted from a deuterium plasma with energies around 2.5 MeV. The neutron spectrum is intimately related to the ion velocity distribution of the plasma. As a consequence, the analysis of neutron energy spectra can give information of the plasma rotation, the ion temperature, heating efficiency and fusion power. The upgraded magnetic proton recoil spectrometer (MPRu), based on the thin-foil technique, is installed at the tokamak JET. The upgrade of the spectrometer was done to allow for measurements of deuterium plasmas. This thesis describes the hardware, the data reduction scheme and the kind of fusion plasma parameters that can be estimated from the data of the MPRu. The MPRu data from 3rd harmonic ion cyclotron resonance and beam heating are studied. Other neutron spectrometer techniques are reviewed as well, in particular in the aspect of suitability for neutron emission spectrometry at ITER. Each spectrometer technique is evaluated using synthetic data which is obtained from standard scenarios of ITER. From this evaluation, we conclude that the thin-foil technique is the best technique to measure, e.g., the ion temperature in terms of time resolution
    corecore